Dislocations in Relaxed SiGe/Si Heterostructures
نویسنده
چکیده
Recent advances in the understanding and control of threading dislocations in substantially relaxed SiGe buffer layers on Si are presented. A model for threading dislocation flow in relaxed graded SiGe buffers is used to determine the potential lower limit of threading dislocation density in relaxed SiGe buffers. Greater densities than expected from the model are seen in relaxed graded alloys with final concentrations greater than 50%. We show that the culprits of the higher threading dislocation density are threading dislocation pile-ups. Observation of early development of pile-ups confirms that inhomogeneous misfit dislocation densities in the graded buffer form regions of more severe crosshatch on the surface that impede dislocation flow. By using chemomechanical planarization (CMP), deleterious pile-up formation can be avoided, and previously formed pile-ups can be destroyed by regrowth of a graded layer. Experiments with CMP and regrowth of graded layers suggest that dislocation annihilation can be effective at reducing threading dislocation densities to densities of the order expected by the model. High quality Ge on Si layers created with the CMP process were used as templates to grow high quality GaAs on Si with strong room temperature photoluminescence and record minority carrier lifetime.
منابع مشابه
High Perfection Approaches to Si-based Devices through Strained Layer Epitaxy
1. Introduction In developing materials and processes for VLSI, the demands of high manufacturing yield make it necessary to consider approaches which are inherently capable of creating structures without defects. For example, the success of the well-known Si/SiGe/Si HBT relies on pseudomorphic strained layers below critical thickness to avoid misfit dislocations. Similarly, since the role of s...
متن کاملExtraction of large valence-band energy offsets and comparison to theoretical values for strained-Si/strained- Ge type-II heterostructures on relaxed SiGe substrates
Metal-oxide-semiconductor capacitors were fabricated on type-II staggered gap strained-Si/strained-Ge heterostructures epitaxially grown on relaxed SiGe substrates of various Ge fractions. Quasistatic quantummechanical capacitance-voltage (CV) simulations were fit to experimental CV measurements to extract the band alignment of the strained layers. The valence-band offset of the strained-Si/str...
متن کاملHigh Mobility Strained Si/SiGe Heterostructure MOSFETs
Strained Siand SiGe-based heterostructure MOSFETs grown on relaxed SiGe virtual substrates exhibit dramatic electron and hole mobility enhancements over bulk Si, making them promising candidates for next generation CMOS devices. The most heavily investigated heterostructures consist of a single strained Si layer grown upon a relaxed SiGe substrate. While this configuration offers significant pe...
متن کاملMOSFET Channel Engineering using Strained Si, SiGe, and Ge Channels
Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with high hole mobilities can also be grown on relaxed SiGe. We review progress in strained Si and dual channel heterostructures, and also introduce high hole mobility digital allo...
متن کاملNanomembrane-based materials for Group IV semiconductor quantum electronics
Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999